Benha University Faculty of engineering (Shoubra)

Assignment 1

Given the following matrices compute the indicated quantities:

$$
\begin{array}{cc}
A=\left[\begin{array}{rrr}
4 & -2 & 1 \\
0 & 9 & -6 \\
0 & 0 & -1
\end{array}\right] & B=\left[\begin{array}{rrr}
-2 & 0 & 3 \\
0 & 7 & -1 \\
0 & 0 & 5
\end{array}\right] \quad C=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
9 & 5 & 4
\end{array}\right] \\
D=\left[\begin{array}{rrrr}
-2 & 0 & -4 & 1 \\
1 & 0 & -1 & 6 \\
8 & 2 & 1 & -1
\end{array}\right] & E=\left[\begin{array}{rrr}
1 & -2 & 0 \\
-2 & 3 & 1 \\
0 & 1 & 0
\end{array}\right]
\end{array}
$$

(a) $(\mathrm{AB})^{-1}$ using analytic solution
(b) $\mathrm{C}^{-1}, \mathrm{E}^{-1}$ using LU decomposition
(c) $\left(\mathrm{DD}^{T}\right)^{-1},\left(\mathrm{D}^{\mathrm{T}} \mathrm{D}\right)^{-1}$ using Gaussian elimination

Benha University

Faculty of engineering (Shoubra)

Student Name:
Date:
Grade:

Benha University
Faculty of engineering (Shoubra)

Assignment 2

Use the inverse of the coefficient matrix to solve the following systems

$$
\begin{array}{rlrl}
3 x_{1} \mid x_{2} & =6 & -2 x_{1}+4 x_{2}-3 x_{3} & =-1 \\
-x_{1}+2 x_{2}+2 x_{3} & =-7 & 3 x_{1}-2 x_{2}+x_{3} & =17 \\
5 x_{1}-x_{3} & =10 & -4 x_{2}+3 x_{3} & =-9
\end{array}
$$

Grade:

Benha University
Faculty of engineering (Shoubra)

Assignment 3

Solve the following systems using Gauss Jordan - Gauss elimination LU decomposition methods.

$$
\begin{aligned}
& x_{1}-3 x_{2}+4 x_{3}=12 \\
& 2 x_{1}-x_{2}-2 x_{3}=-1 \\
& 5 x_{1}-2 x_{2}-3 x_{3}=3
\end{aligned}
$$

$$
\begin{aligned}
x_{1}-3 x_{2}+4 x_{3} & =0 \\
2 x_{1}-x_{2}-2 x_{3} & =5 \\
5 x_{1}-2 x_{2}-3 x_{3} & =-8
\end{aligned}
$$

Benha University

Faculty of engineering (Shoubra)

Date:
Grade:

Benha University
Faculty of engineering (Shoubra)

Assignment 4

Solve the linear system by Gauss-Seidel Method, Cholesky decomposition

1) $x+4 y+z=2,4 x+y+z=5, x+y+4 z=3$
2) $x+y+5 z=3,6 x-2 y+2 z=5,3 x+9 y+4 z=11$

Benha University
Faculty of engineering (Shoubra)

Assignment 5

1- Use Picard's method up to third approximation the following differential equation $y^{\prime `}=x^{3}\left(y^{`}+y\right), y(0)=1, y^{`}(0)=1 / 2$.
2 - Find $\mathrm{y}(0.3)$ for the D.E. $\quad \mathrm{y}^{`}=3 \mathrm{x}+\mathrm{y}^{2}, \mathrm{y}(0)=1$ using Euler method, $\mathrm{h}=0.1$. 3- Solve the following differential equation $y^{`}=x^{2}-y^{2}, y(0)=0$, using Taylor method

Benha University
Faculty of engineering (Shoubra)

Assignment 6

Solve the following differential equations using Runge Kutta of $2^{\text {nd }}, 4^{\text {th }}$ order -Euler- Taylor - Picard methods to find $y(0.2)$.
i)

$$
\frac{\mathrm{d}^{2} y(l)}{\mathrm{dt}^{2}}+100 \frac{\mathrm{dy}(\mathrm{l})}{\mathrm{dt}}+10^{1} y(t)-10^{1}|\sin (3770)|
$$

$y(0)=7, y^{`}(0)=3$
ii)

$$
\begin{aligned}
& \frac{d x}{d t}=-10(x-y) \\
& \frac{d y}{d t}=-x z+28 x-y \\
& \frac{d z}{d t}=x y-8 z / 3
\end{aligned}
$$

$x(0)=2, y(0)=-1, z(0)=3, h=0.1$

Benha University

Faculty of engineering (Shoubra)

Assignment 7

1- Find Lagrange interpolating polynomial satisfy (1,3), (5,-7) , (-13,4) , (2,47)

2- Use Newton's method to find one of the three roots of the cubic polynomial $4 \mathrm{x}^{3}-15 \mathrm{x}^{2}+17 \mathrm{x}-6=0$.

Benha University Faculty of engineering (Shoubra)

Assignment 8

1 - Find Parabolic equation that fit $(3,5),(15,114),(19,201),(23,330)$
2- Find the constants of the curve $y=a \cos x+b \ln x+c e^{x}$ that fit $(1,3),(5,14)$, $(19,101)$

Benha University

Faculty of engineering (Shoubra)

Assignment 9

I) Solve the following heat equations using finite difference method:

1) $\mathrm{U}_{\mathrm{xx}}=\mathrm{U}_{\mathrm{t}}, \mathrm{U}(0, \mathrm{t})=\mathrm{U}(1, \mathrm{t})=0, \mathrm{U}(\mathrm{x}, 0)=\left\{\begin{array}{ll}2 \mathrm{x} & 0 \leq \mathrm{x} \leq 1 / 2 \\ 2(1-\mathrm{x}) & 1 / 2 \leq \mathrm{x} \leq 1\end{array} \quad 0 \leq \mathrm{x} \leq 1,0 \leq \mathrm{t}\right.$
2) $\mathrm{U}_{\mathrm{t}}+\mathrm{U}_{\mathrm{xx}}=0, \quad \mathrm{U}(0, \mathrm{t})=\mathrm{U}(1, \mathrm{t})=0, \mathrm{U}(\mathrm{x}, 0)=\sin \pi \mathrm{x} \quad 0 \leq \mathrm{x} \leq 1,0 \leq \mathrm{t}$

Take $\mathrm{h}=0.1, \mathrm{k}=0.01$ for the above problems.
II) The temperature $\mathrm{u}(\mathrm{x}, \mathrm{t})$ of a long, thin rod of constant cross section and homogeneous conducting material is governed by the one dimensional heat equation. If heat is generated in the material by resistance to current or nuclear reaction, the heat equation becomes: $\mathrm{U}_{\mathrm{xx}}+\frac{\mathrm{kr}}{\rho \mathrm{c}}=\mathrm{k} \mathrm{U}_{\mathrm{t}}, 0<\mathrm{x}<\ell, 0<\mathrm{t}$, where ℓ is the length, ρ is the density, c is specific heat, k is the thermal diffusivity of the rod. The function $r=r(x, t, u)$ represent the heat generated per unit volume.
Suppose $\ell=1.5 \mathrm{~cm}, \mathrm{k}=1.04 \mathrm{cal} / \mathrm{cm}$. deg.s, $\rho=10.6 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{c}=0.056 \mathrm{cal} / \mathrm{g} . \mathrm{deg}$. and $\mathrm{r}=5 \mathrm{cal} / \mathrm{cm}^{3}$.s. If the ends of the rod are kept at $0^{\circ} \mathrm{c}$, then $\mathrm{U}(0, \mathrm{t})=\mathrm{U}(\ell, \mathrm{t})=0, \mathrm{t}>0$ and the initial temperature distribution is given by $\mathrm{U}(\mathrm{x}, 0)=\sin \left(\frac{\pi \mathrm{x}}{\ell}\right), 0 \leq \mathrm{x} \leq \ell$. Take $\mathrm{h}=0.15, \mathrm{k}=0.0225$

Grade:

Benha University

Faculty of engineering (Shoubra)

Student Name:
Date:
Grade:

Benha University

Assignment 10

I) Solve the following wave equations using finite difference method:

1) $U_{t t}-4 U_{x x}=0, U(0, t)=U(1, t)=0, U(x, 0)=\sin \pi x \& U_{t}(x, 0)=0,0 \leq x \leq 1,0 \leq t$
2) $\mathrm{U}_{\mathrm{tt}}-\frac{1}{16 \pi^{2}} \mathrm{U}_{\mathrm{xx}}=0, \mathrm{U}(0, \mathrm{t})=\mathrm{U}(0.5, \mathrm{t})=0, \mathrm{U}(\mathrm{x}, 0)=0 \quad \& \quad \mathrm{U}_{\mathrm{t}}(\mathrm{x}, 0)=\sin (4 \pi \mathrm{x})$, $0 \leq \mathrm{x} \leq 0.5,0 \leq \mathrm{t}$.

Take $\mathrm{h}=0.1, \mathrm{k}=0.01$ for the above problems.
II) In an electric transmission line of length ℓ that carries alternating current of high frequency (called a " loss less" line). The voltage v and current i are described by:

$$
\frac{\partial^{2} \mathrm{v}}{\partial \mathrm{x}^{2}}=\operatorname{Lc} \frac{\partial^{2} \mathrm{v}}{\partial \mathrm{t}^{2}}, \quad \frac{\partial^{2} \mathrm{i}}{\partial \mathrm{x}^{2}}=\operatorname{Lc} \frac{\partial^{2} \mathrm{i}}{\partial \mathrm{t}^{2}}, 0 \leq \mathrm{x} \leq \ell, 0 \leq \mathrm{t}
$$

L is the inductance per unit length $=0.3$ henries $/ \mathrm{ft}$ and C is the capacitance per unit length $=0.1$ farad $/ \mathrm{ft}$. suppose voltage v and current i also satisfy:
$\mathrm{v}(0, \mathrm{t})=\mathrm{v}(200, \mathrm{t})=0,0<\mathrm{t}, \mathrm{v}(\mathrm{x}, 0)=110 \sin \left(\frac{\pi \mathrm{x}}{200}\right), \frac{\partial \mathrm{v}}{\partial \mathrm{t}}(\mathrm{x}, 0)=0,0 \leq \mathrm{x} \leq 200$, similarly
$\mathrm{i}(0, \mathrm{t})=\mathrm{i}(200, \mathrm{t})=0,0<\mathrm{t}, \mathrm{i}(\mathrm{x}, 0)=5.5 \cos \left(\frac{\pi \mathrm{x}}{200}\right), \quad \frac{\partial \mathrm{i}}{\partial \mathrm{t}}(\mathrm{x}, 0)=0,0 \leq \mathrm{x} \leq 200$.
Take $\mathrm{h}=10, \mathrm{k}=0.1$

Grade:

Benha University

Faculty of engineering (Shoubra)

Date:
Grade:

Benha University

Assignment 11

I) Solve the following elliptic equations using finite difference method:

1) $U_{x x}+U_{y y}=4$, with B.C. $U(0, y)=y^{2}, U(1, y)=(y-1)^{2}, 0 \leq y \leq 2 \& U(x, 0)=x^{2}$, $\mathrm{U}(\mathrm{x}, 2)=(\mathrm{x}-2)^{2}, 0 \leq \mathrm{x} \leq 1$.
2) $U_{x x}+U_{y y}=x e^{y}$, with B.C. $U(0, y)=0, U(2, y)=2 e^{y}, 0 \leq y \leq 1 \& U(x, 0)=x$, $\mathrm{U}(\mathrm{x}, 1)=\mathrm{e}^{\mathrm{x}}, 0 \leq \mathrm{x} \leq 2$.

Take $\mathrm{h}=0.2, \mathrm{k}=0.2$ for the above problems.
II) A 6 cm by 5 cm rectangular silver plate has heat being uniformly generated at each point at the rate $\mathrm{q}=1.5 \mathrm{cal} / \mathrm{cm}^{3}$. . Let x represent the distance along the edge of the plate of length 6 cm and y be the distance along the edge of the plate of length 5 cm . Suppose the temperature u along the edges is kept at the following temperatures: $\mathrm{u}(\mathrm{x}, 0)=\mathrm{x}(6-\mathrm{x}), \mathrm{u}(\mathrm{x}, 5)=0,0 \leq \mathrm{x} \leq 6$ and $\mathrm{u}(0, \mathrm{y})=\mathrm{y}(5-\mathrm{y}), \mathrm{u}(6, \mathrm{y})=0$, $0 \leq \mathrm{y} \leq 5$, where the origin lies at a corner of the plate with coordinates $(0,0)$ and edges lies along positive x and y axis. The steady state temperature $\mathrm{u}(\mathrm{x}, \mathrm{y})$ satisfy Poisson equation: $\mathrm{U}_{\mathrm{xx}}+\mathrm{U}_{\mathrm{yy}}=\mathrm{q} / \mathrm{k}$, where k is the thermal conductivity is 1.04 $\mathrm{cal} / \mathrm{cm}$ deg.s, $\mathrm{h}=0.4, \mathrm{k}=1 / 3$.

Grade:

Benha University

Faculty of engineering (Shoubra)

Student Name:
Date:
Grade:

Benha University

Faculty of engineering (Shoubra)

Assignment 12

Determine
i) Degree of vertices
ii) Trail-path-walk
iii) Incidence matrix
iv) Adjacency matrix
v) Eulerian trail or Eulerian circuit

Benha University
Faculty of engineering (Shoubra)

Assignment 13

Determine which of the following Eulerian circuit or Eulerian path or Hamiltonian circuit or Hamiltonian path.

Date:
Grade:

Benha University
Faculty of engineering (Shoubra)

Assignment 14

For the network below, where the numbers by each arc represent the cost of removing the arc, determine Incidence matrix \& Adjacency matrix

Date:
Grade:

